Παρασκευή 12 Σεπτεμβρίου 2008

Μέλαν σώμα 3(ιστορια)

Ιστορία

Προηγούμενοι ερευνητές

Πριν από τον Κίρχοφ μερικοί άλλοι ερευνητές είχαν κάνει λόγο για τη σχέση μεταξύ της εκπομπής και της απορρόφησης ακτινοβολίας από τα διάφορα σώματα:

Το 1804 ο Τζον Λέσλη (John Leslie), πειραματιζόμενος με την θερμική ακτινοβολία, έδειξε πως η εκπομπή ακτινοβολίας ενός σώματος είναι ανάλογη με το δείκτη απορρόφησής του. Κατασκεύασε ένα κυβικό δοχείο το οποίο γέμισε με νερό σε θερμοκρασία βρασμού, του οποίου η μια πλευρά ήταν βαμμένη μαύρη και η άλλη αποτελείτο από ένα πολύ λείο μέταλλο, ενώ οι υπόλοιπες δύο από χαλκό. Έδειξε ότι η ακτινοβολία που απορροφούσε η μαύρη πλευρά ήταν μεγαλύτερη από αυτήν που απορροφούσε η λεία πλευρά. Το όργανο αυτό ονομάστηκε κύβος του Λέσλη. Δημοσίευσε τα συμπεράσματά του σε ένα άρθρο με τίτλο «Experimental Enquiries into the Nature and Properties of Heat».

Το 1858, ο Balfour Stewart, σε μια εργασία του στη Βασιλική Ακαδημία του Εδιμβούργου (Royal Society of Edinburgh) με τίτλο “An account of some experiments on radiant heat”, βασισμένη τόσο σε εμπειρικά όσο και σε θεωρητικά επιχειρήματα, ισχυρίστηκε ότι η εκπομπή ακτινοβολίας από ένα θερμαινόμενο σώμα δεν είναι επιφανειακό φαινόμενο αλλά λαμβάνει χώραν στο εσωτερικό του σώματος, και πως η εκπομπή ισούται με την απορρόφηση του για όλα τα μήκη κύματος.

Το έργο του Κίρχοφ

Στα τέλη του 1859 ο Κίρχοφ, καθηγητής φυσικής στο πανεπιστήμιο της Χαϊδελβέργης, κατάθεσε στην Πρωσική ακαδημία μια εργασία που καταπιανόταν με το θέμα της εκπομπής και απορρόφησης ακτινοβολίας από τα διάφορα σώματα. Έλεγε μεταξύ άλλων ότι ο λόγος της ισχύος της εκπεμπόμενης ακτινοβολίας (e) προς την ισχύ της απορροφώμενης (α), e/α, είναι ο ίδιος για όλα τα σώματα για κάθε συγκεκριμένο μήκος κύματος και εφόσον αυτά βρίσκονται στην ίδια θερμοκρασία.

Λίγο αργότερα, σε άρθρο του στο Annalen der Physik (1860) μελέτησε με μεγαλύτερη λεπτομέρεια τη σχέση μεταξύ εκπομπής και απορρόφησης και εισήγαγε τον όρο "απολύτως μέλαν σώμα" ή απλώς "μέλαν σώμα", ως το σώμα εκείνο που απορροφά όλη την ακτινοβολία που πέφτει πάνω του. Σε ένα τέτοιο σώμα, ο λόγος της εκπεμπόμενης προς την απορροφώμενη ακτινοβολία (e/α) πρέπει να είναι μια συνάρτηση του μήκους κύματος λ της ακτινοβολίας και της θερμοκρασίας Τ του σώματος:

\Phi\ (\lambda\ ,T) = \left (\frac{e}{\alpha\ } \right)_\lambda\

Ως μοντέλο για το μέλαν σώμα ο Κίρχοφ χρησιμοποίησε μια υποθετική κοιλότητα της οποίας τα τοιχώματα ανακλούν τέλεια (χωρίς απώλειες) την ακτινοβολία, και η οποία περιέχει σώματα που απορροφούν και εκπέμπουν ακτινοβολία. Τα σώματα αυτά έχουν τυχαία σύσταση, σχήμα και αρχική θερμοκρασία. Με την πάροδο του χρόνου, και σύμφωνα με τους νόμους της θερμοδυναμικής, τα σώματα αυτά θα αποκτήσουν την ίδια θερμοκρασία και η ενεργειακή κατανομή της ακτινοβολίας δεν θα εξαρτάται από την σύνθεση ή τη δομή τους αλλά μόνο από την θερμοκρασία.

Οι μεταγενέστεροι

Στη συνέχεια πολλοί φυσικοί ασχολήθηκαν με τις ιδιότητες της συνάρτησης αυτής, καθώς το θέμα αυτό συνδεόταν με διάφορα άλλα, όπως η μελέτη του φάσματος της ακτινοβολίας των άστρων και η εξακρίβωση της επιφανειακής τους θερμοκρασίας, ή το ζήτημα του φωτισμού των δρόμων, για το οποίο έπρεπε να βρεθούν οι πιο οικονομικές λύσεις. Τους ορίζοντες της μελέτης των φασμάτων των διαφόρων σωμάτων διεύρυνε η ανακάλυψη ότι το φως είναι ηλεκτρομαγνητικό κύμα. Η εφεύρεση του βολομέτρου (bolometer) από τον Samuel Pierpont Langley το 1881 επέκτεινε την παρατηρήσιμη θερμική ακτινοβολία για μήκη κύματος μέχρι και ένα εκατομμυριοστό του μέτρου. Το 1888 ο Χένριχ Χερτζ (Heinrich Hertz) έδειξε ότι εναλλασσόμενα ρεύματα σε ανοικτά κυκλώματα παράγουν ηλεκτρομαγνητικά κύματα με μήκος της τάξεως του ενός μέτρου. Από την άλλη πλευρά το φάσμα διευρύνθηκε με την ανακάλυψη των ακτίνων Χ και των ακτίνων γ που εκπέμπονται από ραδιενεργές ουσίες.

Το 1976 ο Ιταλός φυσικός Adolfo Bartoli συνέδεσε την θερμική ακτινοβολία με το δεύτερο νόμο της θερμοδυναμικής. Κατέληξε στο συμπέρασμα ότι η ακτινοβολία πρέπει να ασκεί κάποια πίεση πάνω στο σώμα που την απορροφά.

Μια από τις πρώτες θεωρητικές προσπάθειες για την περιγραφή της ενεργειακής κατανομής στα διάφορα μήκη κύματος της ακτινοβολίας του μέλανος σώματος έγινε από τον Eugen von Lommel, καθηγητή φυσικής στο πανεπιστήμιο του Munich, το 1878. Ο Lommel μελέτησε (θεωρητικά) την εκπομπή θερμικής ακτινοβολίας από ένα στερεό σώμα, βασισμένος σε ένα μηχανικό μοντέλο για την περιγραφή των δονήσεων μέσα σε αυτό.

Το 1879 ο Τζόζεφ Στέφαν (Joseph Stefan) κατέληξε εμπειρικά σε ένα νόμο για την ολική ποσότητα ακτινοβολίας που εκπέμπει ένα σώμα:

\rho\  = AT^4

όπου ρ είναι η πυκνότητα της ακτινοβολίας και Α μια σταθερά. Το 1884 ο Ludwig Boltzmann κατέληξε στον ίδιο νόμο θεωρητικά, στηριζόμενος πάνω στην ηλεκτρομαγνητική θεωρία του Maxwell και χρησιμοποιώντας τα θερμοδυναμικά επιχειρήματα του Bartoli. Η σχέση αυτή έμεινε γνωστή ως νόμος του Στέφαν, ή νόμος των Stefan – Boltzmann.

Το 1888, ο Μίκελσον (Vladimir Alexandrovich Michelson) μελέτησε το ζήτημα χρησιμοποιώντας στοιχεία από την κινητική θεωρία των αερίων, συμπεριλαμβανομένου και του νόμου του Maxwell για την κατανομή των ταχυτήτων στα μόρια του αερίου, για να καταλήξει σε ένα τύπο για την συνάρτηση Φ(λ,Τ) του Κίρχοφ.

Εν τω μεταξύ, το 1886 ο Samuel Pierpont Langley, με την βοήθεια του βολομέτρου που ο ίδιος είχε εφεύρει προηγουμένως, μελέτησε την εκπομπή θερμικής ακτινοβολίας από χαλκό του οποίου η θερμοκρασία κυμαινόταν μεταξύ 330oC και 815oC. Διαπίστωσε μια συγκεκριμένη μετατόπιση της μέγιστης έντασης της ακτινοβολίας με την αύξηση της θερμοκρασίας. Τις μετρήσεις του επέκτεινε ο Friedrich Paschen, καθηγητής στο τεχνικό πανεπιστήμιο του Hanover (Technical University of Hanover). Ο Paschen άρχισε να πειραματίζεται σ’ αυτό τον τομέα το 1892, εφαρμόζοντας πολλές διαφορετικές μεθόδους μέτρησης της έντασης της θερμικής ακτινοβολίας και χρησιμοποιώντας πολλά διαφορετικά υλικά. Το αποτέλεσμα ήταν να καταλήξει το 1896 σε μια εμπειρική φόρμουλα για την συνάρτηση του Κίρχοφ:

\Phi\ (\lambda\ ,T) = c_1 \lambda\ ^{-a} exp \left (- \frac{c_2}{\lambda\ T} \right)

όπου α, c1 και c2 σταθερές. Η τιμή του α υπολογίστηκε γύρω στο 5,5.

Στην ίδια σχέση είχε καταλήξει θεωρητικά και ο Βίλχελμ Βίεν (Wilhelm Wien) ανεξάρτητα από τον Paschen. Ο Βίεν χρησιμοποίησε την ιδέα του Bartoli και του Boltzmann να εμπλέξουν τόσο την ηλεκτροδυναμική όσο και την θερμοδυναμική στη μελέτη της θερμικής ακτινοβολίας. Όμως ο Βίεν, αντί να ενδιαφερθεί για την συνολική ποσότητα ακτινοβολίας που εκπέμπεται, ενδιαφέρθηκε για την κατανομή της ενέργειας στα διάφορα μήκη κύματος. Λαμβάνοντας υπόψη την αρχή του Doppler ότι το μήκος κύματος της ακτινοβολίας εξαρτάται από την ταχύτητα της πηγής, κατέληξε το 1893 σε μια σχέση που έμεινε γνωστή ως νόμος μετατόπισης του Βίεν:

 \lambda_\max \cdot T = const.

που δείχνει ότι το μήκος κύματος της μέγιστης εκπομπής ακτινοβολίας μετατοπίζεται αντιστρόφως ανάλογα με την θερμοκρασία. Εκτός από καθαρά θερμοδυναμικά επιχειρήματα, ο Βίεν εφάρμοσε στη συνέχεια την «μοριακή υπόθεση», δηλαδή υπέθεσε πως η ακτινοβολία του μέλανος σώματος από μόρια που υπακούουν τον νόμο της κατανομής των ταχυτήτων του Maxwell (όπως είχε κάνει και ο Μίκελσον προηγουμένως). Σύμφωνα με αυτήν, ο αριθμός των μορίων που έχουν ταχύτητα υ είναι ανάλογος της ποσότητας  \upsilon\ ^2 exp (- c \upsilon\ ^2 / T ) , όπου c σταθερά και Τ η απόλυτη θερμοκρασία. Υποθέτοντας ότι το μήκος κύματος της ακτινοβολίας που εκπέμπει ένα μόριο είναι συνάρτηση μόνο της ταχύτητάς του, έφτασε στην σχέση

 \rho_\lambda\  = F ( \lambda\ ) exp \left (- \frac{f ( \lambda\ )}T \right)

Χρησιμοποιώντας τον νόμο της μετατόπισης προσδιόρισε την συνάρτηση μέσα στο εκθετικό ως:

 f ( \lambda\ ) = \frac{c_2}{\lambda\ }

και από τον νόμο των Στέφαν - Μπόλτζμαν προσδιόρισε την συνάρτηση έξω από το εκθετικό ως:

 F ( \lambda\ ) = \frac{c_1}{\lambda^5 }

Επειδή η συνάρτηση που προκύπτει από την αντικατάσταση των δύο τελευταίων στην προηγούμενη είναι ίδια με τη συνάρτηση του Paschen, εφόσον δώσουμε στο α την τίμή 5, ο Βίεν ταύτισε το  \rho_\lambda\ με τη συνάρτηση Φ(λ,Τ) του Κίρχοφ. Για την δουλειά του πάνω στην θερμική ακτινοβολία ο Βίεν τιμήθηκε με το βραβείο νόμπελ φυσικής το 1911.

Ο Μαξ Πλανκ και η απαρχή της Κβαντομηχανικής

Στις 27 Απριλίου του 1900 ο Λόρδος Κέλβιν έδωσε μια διάλεξη στο Βασιλικό Ινστιτούτο της Μεγάλης Βρετανίας, στο Λονδίνο, με τίτλο "Nineteenth-Century Clouds over the Dynamical Theory of Heat and Light" (Σύννεφα στην δυναμική θεωρία της θερμότητας και του φωτός κατά τον δέκατο ένατο αιώνα), στην οποία μίλησε για τα δύο σκοτεινότερα σημεία στην φυσική εκείνη την εποχή: το ένα ήταν το πρόβλημα της σχετικής κίνησης των σωμάτων ως προς τον αιθέρα, που προέκυψε από τα πειράματα των Μίκελσον και Μόρλεϊ, και το δεύτερο αφορούσε την ασυμφωνία μεταξύ θεωρίας και πειράματος σχετικά με την αρχή της ισοκατανομής της ενέργειας και τις ειδικές θερμότητες των σωμάτων, και που σχετίζεται επίσης με την ακτινοβολία του μέλανος σώματος. Ένα χρόνο αργότερα μάλιστα, πρότεινε ότι η αρχή της ισοκατανομής πρέπει να απορριφθεί. Η επισήμανση αυτή αποδείχθηκε ιδιαίτερα οξυδερκής, καθώς τα δύο "σύνεφα" του Λόρδου Κέλβιν αποτέλεσαν σημεία εκκίνησης για τις δύο μεγάλες επαναστάσεις του εικοστού αιώνα στην φυσική, το πρώτο για τη θεωρία της σχετικότητας και το δεύτερο για την κβαντομηχανική (ωστόσο ο Αϊνστάιν, όπως ισχυρίστηκε τουλάχιστον, δεν γνώριζε τα πειράματα Μίκελσον - Μόρλεϊ).

Λίγο αργότερα από την διάλεξη του Λόρδου Κέλβιν, στις 19 Οκτωβρίου του 1900, ο Πλανκ διατύπωσε τον νόμο του για την ακτινοβολία του μέλανος σώματος.

Ο Πλανκ είχε αφιερώσει μεγάλο μέρος της ερευνητικής του δραστηριότητας στην μελέτη του δεύτερου νόμου της θερμοδυναμικής και την έννοια της εντροπίας, θέλοντας να τον προβάλει ως θεμελιώδη νόμο της φύσης, στο ίδιο επίπεδο με την αρχή διατήρησης της ενέργειας. Έτσι ήταν για πολλά χρόνια αντίθετος με την ατομική εξήγηση της θερμότητας, σύμφωνα με την οποία ο δεύτερος νόμος έχει στατιστικό χαραχτήρα. Η πεποίθησή του αυτή τον οδήγησε σε αντιπαραθέσεις με διάφορους υποστηρικτές της εν λόγω υπόθεσης και ιδιαίτερα με τον Μπόλτζμαν. Γύρω στο 1894, ο Πλανκ έστρεψε την προσοχή του στη θερμική ακτινοβολία. Κατάλαβε ότι στο πεδίο αυτό ανοίγονται νέες δυνατότητες κατανόησης της θερμοδυναμικής και ήλπιζε σε μια γενικότερη κατανόηση των μη αντιστρεπτών διαδικασιών και ίσως την εξαγωγή της έννοιας της εντροπίας μέσω της μηχανική ή της ηλεκτροδυναμικής. Έτσι, χρησιμοποιώντας το μοντέλο της κοιλότητας με τελείως ανακλαστικά τοιχώματα του Κίρχοφ, προσπάθησε να ερμηνεύσει την διαδικασία ομογενοποίησης της ακτινοβολίας μέσα στην κοιλότητα (κατά την οποία η ακτινοβολία χάνει όλες τις άλλες πληροφορίες εκτός από αυτές που αφορούν την θερμοκρασία της κοιλότητας) χωρίς να καταφύγει στη βοήθεια της στατιστικής και των πιθανοτήτων.

Για να το πετύχει αυτό το 1898 εισήγαγε την έννοια της «φυσικής ακτινοβολίας» (natürliche strahlung): αποδίδοντας τις ιδιότητες της φυσικής ακτινοβολίας σε μια διαδικασία εκπομπής ηλεκτρομαγνητικής ακτινοβολίας, εννοούμε ότι η ενέργεια της ακτινοβολίας κατανέμεται με τελείως ακανόνιστο τρόπο μεταξύ της κάθε μεμονωμένης δόνησης που μπορούμε να θεωρήσουμε ότι την αποτελεί. Έδειξε ότι κάθε διαδικασία εκπομπής ακτινοβολίας που μπορεί να χαρακτηριστεί «φυσική», οδηγεί αναπόφευκτα στην μη αντιστρεψιμότητα. Έτσι, αν φυσική ακτινοβολία που εκπέμπεται από δύο σώματα διαφορετικών θερμοκρασιών, απορροφάται και επανεκπέμπεται από ένα ταλαντωτή, τότε η εκπεμπόμενη ακτινοβολία θα αντιπροσωπεύει μια πιο ομοιόμορφη θερμοκρασία. Με την βοήθεια της έννοιας αυτής κατάφερε να ορίσει την εντροπία της ακτινοβολίας από μια κατάλληλη έκφραση, έτσι ώστε η μεταβολή της εντροπίας να είναι πάντα μια θετική ποσότητα. Επιπλέον, κατέληξε σε μια σχέση μεταξύ της ενέργειας του ταλαντωτή και της έντασης της ακτινοβολίας για ένα δοσμένο μήκος κύματος.

Κατά το 1899 όμως, κατάλαβε ότι η υπόθεση της φυσικής ακτινοβολίας δεν ήταν παρά μια άλλη διατύπωση του δεύτερου νόμου της θερμοδυναμικής. Έτσι η προσπάθειά του να αναγάγει τον δεύτερο νόμο από τις αρχές της ηλεκτροδυναμικής είχε αποτύχει. Ωστόσο η προσπάθειά του δεν ήταν άκαρπη, καθώς η ταύτιση της ηλεκτρομαγνητικής εντροπίας με την θερμοδυναμική εντροπία, οδηγεί άμεσα σε ένα ηλεκτρομαγνητικό ορισμό της θερμοκρασίας της ακτινοβολίας. Η κατάσταση μέγιστης εντροπίας αντιστοιχεί σε θερμική ισορροπία, και είναι το σημείο στο οποίο η θερμική ακτινοβολία σταθεροποιείται, έχοντας ομογενοποιηθεί. Ακόμα, ο Πλανκ κατέληξε σε ένα νόμο για την κατανομή της ενέργειας στα διάφορα μήκη κύματος που ήταν ο ίδιος με τον νόμο του Βίεν:

 \rho_\nu = \frac{8\pi b\nu^3}{c^3} exp \left (- \frac{\alpha \nu}T \right)

Για τις σταθερές α και b υπολόγισε τις ακόλουθες τιμές:

\alpha = 0,4818\times  10^{-10} s \cdot ^oC
b = 6,885\times  10^{-27} erg \cdot s

Βεβαίως ο Πλανκ γνώριζε για τον νόμο του Βίεν, δεν ήταν ευχαριστημένος όμως με τον τρόπο εξαγωγής του. Ο νόμος αυτός φαινόταν να επαληθεύεται από τις μετρήσεις.

Όμως τον καιρό που ο Πλανκ παρουσίασε αυτά τα αποτελέσματα, νέα πειραματικά δεδομένα με μετρήσεις σε μεγάλα μήκη κύματος, από τους Otto Lummer, Ferdinand Kurlbaum, Ernst Pringsheim και Heinrich Rubens έδειξαν ότι ο νόμος αυτός αποκλίνει από τις μετρήσεις. Στο επόμενο διάστημα έγιναν συνεχόμενες βελτιώσεις στις τεχνικές παρατήρησης ηλεκτρομαγνητικής ακτινοβολίας μεγάλου μήκους κύματος, τόσο από τους τρεις αυτούς ερευνητές όσο και από άλλους που έστρεψαν την προσοχή τους στο ζήτημα αυτό. Έτσι, μέσα στο έτος 1900 είχε γίνει φανερό ότι ο νόμος του Βιέν δεν περιέγραφε σωστά την θερμική ακτινοβολία σε αυτή την περιοχή του φάσματος.

Ο Πλανκ πληροφορήθηκε στις 7 Οκτωβρίου του 1900 από τον Rubens για τις τελευταίες μετρήσεις που διέψευδαν οριστικά το νόμο, καθώς επίσης και για το γεγονός ότι στα μεγάλα μήκη κύματος προβλέπει σωστά τα αποτελέσματα ένας τύπος που προτάθηκε από τον Λόρδο Ρέηλεϊ (Βλέπε πιο πάνω ακτινοβολία κοιλότητας). Έτσι, υπήρχαν δύο διαφορετικοί μαθηματικοί τύποι για την ακτινοβολία του μέλανος σώματος: Ο τύπος του Βίεν, που προέβλεπε σωστά τις μετρήσεις στα μικρά μήκη κύματος αλλά αποτύγχανε στα μεγάλα, και ο τύπος Ρέηλεϊ-Τζιν που προέβλεπε σωστά τις μετρήσεις στα μεγάλα μήκη κύματος και αποτύγχανε στα μικρά. Ο Πλανκ σύγκρινε τις δύο σχέσεις και σύντομα κατέληξε σε μια σχέση που προέβλεπε σωστά ολόκληρο το φάσμα:

\Phi\ (\lambda\ ,T) = \rho_\lambda = \frac{c_1}{\lambda\ ^5} \frac{1}{e^{\frac{c_2}{\lambda\ T}}-1}

Έστειλε τον καινούριο τύπο στον Rubens, γραμμένο πάνω σε μια ταχυδρομική κάρτα, και μια-δυο μέρες αργότερα, ο Rubens επισκέφτηκε τον Πλανκ για να του ανακοινώσει ότι συμφωνούσε τέλεια με τα πειραματικά δεδομένα.

Τώρα ο Πλανκ είχε το σωστό νόμο, αλλά χωρίς μια ικανοποιητική φυσική ερμηνεία. Εντομεταξύ, είχε συνειδητοποιήσει ότι η υπόθεση της φυσικής ακτινοβολίας που είχε επινοήσει παρουσίαζε πολλά κοινά με αυτήν της μοριακής αταξίας του Μπόλτζμαν στην κινητική θεωρία της θερμότητας. Επιπλέον, με την αποτυχία του νόμου του Βίεν, κατάλαβε ότι η υπόθεση αυτή από μόνη της δεν επαρκούσε για να τον οδηγήσει στο σωστό νόμο. Αν και για λίγο συνέχισε τις προσπάθειες να αναλύσει το νόμο βασιζόμενος στη θερμοδυναμική και την ηλεκτροδυναμική χωρίς την στατιστική, τελικά είδε ότι δεν υπήρχε άλλος δρόμος από το να υοθετήσει την μέθοδο του Μπόλτζμαν, δηλαδή τη στατιστική ερμηνεία της εντροπίας.

Δεν υπάρχουν σχόλια: