Παρασκευή 12 Σεπτεμβρίου 2008

Μελαν σωμα 2(ακτινοβολιες)

Παραδείγματα θερμικής ακτινοβολίας σωμάτων που προσεγγίζουν το μέλαν σώμα

Η λάβα

Λάβα pahoehoe
Λάβα pahoehoe

Στην εικόνα φαίνεται μια ποσότητα λάβας pahoehoe, ενός είδους βαλσατικής λάβας. Η θερμοκρασία της μπορεί να υπολογιστεί από το χρώμα της. Το αποτέλεσμα του υπολογισμού συμφωνεί με τις πειραματικές μετρήσεις για λάβα θερμοκρασίας από 1000 οC μέχρι 1200 οC.


Η ακτινοβολία του ανθρώπινου σώματος

Μεγάλο ποσοστό από την θερμική ενέργεια ενός ατόμου εκπέμπεται στο περιβάλλον υπό την μορφή υπέρυθρης ακτινοβολίας.

Όπως όλα τα υλικά σώματα, το ανθρώπινο σώμα εκπέμπει θερμική ακτινοβολία. Επειδή η θερμοκρασία του είναι χαμηλή, το μεγαλύτερο μέρος του φάσματος της ακτινοβολίας αυτής βρίσκεται έξω από την περιοχή του ορατού, στην περιοχή της υπέρυθρης ακτινοβολίας. Ταυτόχρονα, το σώμα μας απορροφά θερμική ακτινοβολία από το περιβάλλον. Η διαφορά της ισχύς της απορροφούμενης ενέργειας από την εκπεμπόμενη μας δείχνει πόση ενέργεια απελευθερώνουμε στο περιβάλλον υπό την μορφή ηλεκτρομαγνητικής ακτινοβολίας:

P_{net}=P_{emit}-P_{absorb} \,

Μπορούμε να υπολογίσουμε την ισχύ της με την βοήθεια του νόμου των Στέφαν - Μπόλτζμαν:

P_{net}=A\sigma \epsilon \left( T^4 - T_{0}^4 \right) \,

όπου Α το συνολικό εμβαδόν της επιφάνειας του ανθρώπινου σώματος, που για ένα ενήλικο άτομο κυμαίνεται μεταξύ 1,5 και 2 m2 (εδώ θα θέσουμε Α = 2m2). Ο συντελεστής εκπομπής της επιδερμίδας μας είναι πολύ κοντά στην μονάδα (ε = 0,98). Η θερμοκρασία της ελεύθερης επιδερμίδας είναι γύρω στους 32 οC, (90 °F, ή 305 °K), αλλά τα ρούχα την μειώνουν κατά μερικούς βαθμούς. Έτσι, για τον υπολογισμό μας θα χρησιμοποιήσουμε την τιμή των 301 °K. Η θερμοκρασία του περιβάλλοντος κυμαίνεται πολύ. Αν θεωρήσουμε όμως ότι έχουμε θερμοκρασία δωματίου, 20 °C (68 °F, ή 293 °K), βρίσκουμε ότι η ισχύς της ακτινοβολούμενης ενέργειας από το ανθρώπινο σώμα είναι:

P_{net} = 95 \ \mathrm{watts} \,

Βλέπουμε δηλαδή ότι το σώμα μας εκπέμπει ακτινοβολία περίπου ίση με ένα ηλεκτρικό λαμπτήρα των 100 watt, με την διαφορά ότι εκπέμπει στο υπέρυθρο ή και σε μεγαλύτερα μήκη κύματος. Η συνολική ενέργεια που απελευθερώνεται κατά την διάρκεια μιας ολόκληρης μέρας είναι σχεδόν 9 εκατομμύρια Τζάουλς, ή 2000 θερμίδες (kcal). Ο φυσικός ρυθμός του μεταβολισμού είναι περίπου 100-120 watts, ενώ αν ένα άτομο χάνει ενέργεια με ρυθμό μεγαλύτερο από 160 watts, θα αισθάνεται κρύο. Αντίθετα, κατά την διάρκεια έντονης σωματικής δραστηριότητας ο μεταβολισμός γίνεται πολύ μεγαλύτερος, και καθώς η εκπομπή ακτινοβολίας δεν είναι αρκετή, η επιπλέον ενέργεια αποβάλλεται μέσω της εφίδρωσης.

Εφαρμόζοντας τον νόμο μετατόπισης του Wien στα πιο πάνω δεδομένα, βρίσκουμε ότι το μήκος κύμματος για το οποίο η εκπομπή γίνεται μέγιστη είναι:

\lambda_{max} = \frac{2.898\times 10^6 \ \mathrm{K} \cdot \mathrm{nm}}{305 \ \mathrm{K}} = 9500 \ \mathrm{nm} \,

Γι' αυτό, οι συσκευές θερμικής απεικόνισης όπως οι διόπτρες υπερύθρου που είναι σχεδιασμένες για εντοπισμό ανθρώπων, ανταποκρίνονται συνήθως σε περιοχή φάσματος 7 ώς 14μm.

Σχέση θερμοκρασίας μεταξύ ενός πλανήτη και του άστρου του

(Συμπληρωματικά, βλέπε και τα παραδείγματα στο άρθρο νόμος Στέφαν - Μπόλτζμαν)

Για τον υπολογισμό αυτό θα θεωρήσουμε ότι τόσο η Γη όσο και ο Ήλιος είναι σφαιρικά μελανά σώματα, το καθένα από τα οποία βρίσκεται σε κατάσταση θερμικής ισορροπίας. Για ένα πιο ακριβή υπολογισμό θα έπρεπε επιπλέον να ληφθούν υπόψην: το φαινόμενο albedo (η αντανάκλαση μέρους της ακτινοβολίας από τον πλανήτη), το φαινόμενο του θερμοκηπίου (για πλανήτες με ατμόσφαιρα), η ενέργεια που παράγεται εσωτερικά από τον ίδιο τον πλανήτη (αυτό παίζει σημαντικότερο ρόλο σε πλανήτες όπως τον Δία).

Με την βοήθεια του νόμου Στέφαν-Μπόλτζμαν βρίσκουμε την συνολική ισχύ (ενέργεια ανά δευτερόλεπτο) εκπομπής του Ήλιου:

Η Γη έχει επιφάνεια απορρόφησης ίση με ένα δισδιάστατο κύκλο, παρά με την επιφάνεια μιας σφαίρας.
Η Γη έχει επιφάνεια απορρόφησης ίση με ένα δισδιάστατο κύκλο, παρά με την επιφάνεια μιας σφαίρας.
P_{S emt} = \left( \sigma T_{S}^4 \right) \left( 4 \pi R_{S}^2 \right) \qquad \qquad (1)

όπου:

  • \sigma \, είναι η σταθερά Στέφαν-Μπόλτζμαν,
  • T_S \, είναι η επιφανειακή θερμοκρασία του Ήλιου, και
  • R_S \, είναι η ακτίνα του Ήλιου.

Ο Ήλιος εκπέμπει αυτή την ισχύ εξίσου προς όλες τις κατευθύνσεις. Γι' αυτό, η Γη δέχεται μόνο ένα πολύ μικρό κλάσμα της. Η ισχύς από τον Ήλιο που απορροφάται από την Γή είναι:

P_{E abs} = P_{S emt} \left( \frac{\pi R_{E}^2}{4 \pi D^2} \right) \qquad \qquad (2)

όπου:

  • R_{E} \, είναι η ακτίνα της Γης και
  • D \, είναι η απόσταση μεταξύ Ήλιου και Γης.

Παρόλο που η Γη απορροφώ σαν μια επιφάνεια κύκλου με εμβαδόν πR2, εκπέμπει ισοδύναμα προς όλες τις κατευθύνσεις, όπως μια σφαίρα:

P_{E emt} = \left( \sigma T_{E}^4 \right) \left( 4 \pi R_{E}^2 \right) \qquad \qquad (3)

όπου:

  • TE είναι η επιφανειακή θερμοκρασία της Γης.

Με βάση την υπόθεση ότι η Γη βρίσκεται σε κατάσταση θερμικής ισορροπίας, η ισχύς που απορροφά πρέπει να είναι ίση με την ισχύ που εκπέμπει:

P_{E abs} = P_{E emt}\,

Αν στα δύο μέλη της εξίσωσης αυτής αντικαταστήσουμε τις εξισώσεις 1, 2, και 3 παίρνουμε:

\left( \sigma T_{S}^4 \right) \left( 4 \pi R_{S}^2 \right) \left( \frac{\pi R_{E}^2}{4 \pi D^2} \right) = \left( \sigma T_{E}^4 \right) \left( 4 \pi R_{E}^2 \right).\,

Κάνοντας τις απαλοιφές, παίρνουμε:

T_{S}\sqrt{\frac{R_{S}}{2 D}} = T_{E}
όπου:
R_{S} = 6.96 \times 10^8 \  \mathrm{m},
D = 1.5 \times 10^{11} \ \mathrm{m},
T_{E} \approx 14 \ \mathrm{{}^\circ C} = 287 \ \mathrm{K},
Βρίσκουμε την επιφανειακή θερμοκρασία του Ήλιου ίση με
T_{S} \approx 5960 \ \mathrm{K}.

Η τιμή αυτή βρίσκεται μέσα στο 3% της συνήθους μέτρησης των 5780 kelvins. Έτσι πιο πάνω νόμος είναι έγκυρος για τις περισσότερες επιστημονικές και μηχανολογικές εφαρμογές.


Η κοσμική ακτινοβολία υποβάθρου

1. Χαρτογράφηση της ανισσοτροπίας της κοσμικής ακτινοβολίας υποβάθρου από το δορυφόρο WMAP.
2. Καμπύλη κατασκευασμένη με βάση τα δεδομένα από το φασματοσκόπιο FIRAS του δορυφόρου COBE.

Στην πρώτη εικόνα βλέπουμε την σχηματοποιημένη καταγραφή δεδομένων από τον δορυφόρο WMAP (Wilkinson Microwave Anisotropy Probe) της NASA, ο οποίος μετρά προς διάφορες κατευθύνσεις την θερμοκρασία της θερμικής ακτινοβολίας που απελευθερώθηκε κατά την διάρκεια της μεγάλης έκρηξης που δημιούργησε το σύμπαν - γνωστής και ως κοσμική ακτινοβολία υποβάθρου. Σκοπός του WMAP είναι να ανιχνεύσει μικροσκοπικές διαφορές στην ακτινοβολία υποβάθρου ούτως ώστε να μπορούν να ελεγχθούν τα διάφορα μοντέλα που περιγράφουν την εξέλιξη του σύμπαντος. Αν και η ακτινοβολία αυτή είναι διάχυτη και δεν αφορά (πλέον) κανένα συγκεκριμένο σώμα, το φάσμα της παρουσιάζει εκπληκτική συμφωνία με τον νόμο της ακτινοβολίας του μέλανος σώματος. Πρόκειται για την πιο τέλεια προσέγγιση που έχει καταγραφεί ποτέ. Η δεύτερη εικόνα προέρχεται από προηγούμενη αποστολή με παρόμοιο σκοπό, από τον δορυφόρο COBE (Cosmic Background Explorer). Είναι γραφική παράσταση της έντασης της ακτινοβολίας ως προς των αριθμό των κυμάτων ανά εκατοστό. Η συμφωνία των πειραματικών μετρήσεων με την θεωρεία είναι τέτοια ώστε τα 34 σημεία που τοποθετήθηκαν για να σχηματίσουν την καμπύλη καλύφθηκαν ακριβώς από την καμπύλη που προβλέπει η θεωρεία, και τα διαστήματα λάθους ήταν τόσο μικρά που δεν ξεπερνούν το πάχος της γραμμής. Τα δεδομένα δείχνουν ότι το 99,97% της ακτινοβολίας υποβάθρου απελευθερώθηκε μέσα στον πρώτο χρόνο από την στιγμή της μεγάλης έκρηξης, και αντιστοιχούν στο φάσμα μελανού σώματος θερμοκρασίας 2,7°K.


Οι μαύρες τρύπες

Προσομοίωση μιας μαύρης τρύπας μεγέθους 10 ηλιακών μαζών όπως αυτή θα φαινόταν από απόσταση 600km, με φόντο την γαλαξιακή ζώνη.
Προσομοίωση μιας μαύρης τρύπας μεγέθους 10 ηλιακών μαζών όπως αυτή θα φαινόταν από απόσταση 600km, με φόντο την γαλαξιακή ζώνη.

Μαύρη τρύπα ονομάζεται μια περιοχή του χώρου στην οποία το βαρυτικό πεδίο είναι τόσο ισχυρό, ώστε κανένα σώμα που βρίσκεται μέσα σ’ αυτήν δεν μπορεί να διαφύγει. Η επιφάνεια της περιοχής αυτής ονομάζεται «ορίζοντας γεγονότων». Η δυνατότητα ύπαρξης μαύρων οπών προβλέπεται από την γενική θεωρία της σχετικότητας, όταν μια ποσότητα ύλης συγκεντρωθεί σε μια απειροελάχιστη περιοχή. Αναμένεται ότι κάτι τέτοιο συμβαίνει όταν ένα άστρο με αρκετά μεγάλη μάζα, τουλάχιστον 3-5 φορές μεγαλύτερη από την μάζα του Ήλιου, χρησιμοποιήσει όλα τα «καύσιμά» του και αρχίσει να ψύχεται. Τελικά η μάζα του άστρου καταρρέει λόγω της βαρυτικής έλξης των σωματιδίων που την αποτελούν, δημιουργώντας μια μαύρη τρύπα. Μέσα στα όρια της μαύρης τρύπας το βαρυτικό πεδίο είναι τόσο ισχυρό, που ούτε το φως δεν μπορεί να διαφύγει.

Εφόσον η μαύρη τρύπα απορροφά όλο το φως που πέφτει πάνω της (όπως και οτιδήποτε άλλο), αποτελεί, σύμφωνα με τον ορισμό, μέλαν σώμα. Όμως ο τρόπος με τον οποίο μια μαύρη τρύπα απορροφά φως, δεν έχει τίποτα να κάνει με τον τρόπο που ένα στερεό σώμα απορροφά φως. Επιπλέον, εφόσον τίποτα δεν είναι δυνατόν να διαφύγει από το βαρυτικό της πεδίο, δεν πρέπει ούτε και να εκπέμπει οποιαδήποτε ακτινοβολία.

Ωστόσο το 1974 ο Βρετανός φυσικός Στέφεν Χόκινκ (Stephen Hawking), χρησιμοποιώντας την κβαντική θεωρία πεδίου σε καμπύλο χωροχρόνο, έδειξε ότι πρέπει να εκπέμπεται θερμική ακτινοβολία. Η ύπαρξή της οφείλεται στις κβαντικές διακυμάνσεις του κενού ακριβώς έξω από τον ορίζοντα γεγονότων, οι οποίες έχουν ως αποτέλεσμα την δημιουργία ενός εν δυνάμει ζεύγους σωματιδίων. Αν το ένα μέλος του ζεύγους περάσει τον ορίζοντα γεγονότων και απορροφηθεί, ενώ το άλλο ακολουθήσει αντίθετη πορεία και διαφύγει, για ένα εξωτερικό παρατηρητή θα φανεί ότι η μαύρη τρύπα έχει εκπέμψει ένα σωματίδιο. Επιπλέον, η μάζα της θα ελαττωθεί κατά ποσό ίσο με την μάζα του σωματιδίου αυτού. Η ακτινοβολία αυτή ονομάζεται ακτινοβολία Χόκινκ και ακολουθεί τον νόμο της ακτινοβολίας του μέλανος σώματος:

Σύμφωνα με την θεωρία, μια μαύρη τρύπα χαρακτηρίζεται από μια θερμοκρασία αντιστρόφως ανάλογη από το μέγεθος του ορίζοντα γεγονότων της, και επομένως αντιστρόφως ανάλογη από την μάζα (Μ) της. Με λίγα λόγια, όσο μικρότερη είναι μια μαύρη τρύπα, τόσο μεγαλύτερη είναι η θερμοκρασία (Τ) της:

T = \frac{{\hbar}c^3}{8{\pi}kGM} \qquad \qquad (1)

όπου:

  • \hbar\ =\ \frac{h}{2\pi} = \,\,\, 1.054\ 571\ 68(18)\times10^{-34}\ \mbox{J}\cdot\mbox{s} \,\,\ η ανηγμένη σταθερά του Πλανκ (ή σταθερά του Ντίρακ),
  • c= 299792458 \,\ m \cdot s^{-1} η ταχύτητα του φωτός στο κενό.


Η ακτίνα του ορίζοντα γεγονότων (ακτίνα Schwarzschild) δίνεται από την σχέση:

r_{\rm S} = {2\,GM \over c^2}

και επομένως η ολική επιφάνεια εκπομπής θα είναι:

A = 4 \pi r_S^2 = {16 \pi\ G^2 M^2 \over c^4} \qquad \qquad (2)

Η σταθερά Στέφαν-Μπόλτζμαν δίνεται από την σχέση:

\sigma=\frac{\pi^2 k^4}{60c^2 {\hbar}^3} \qquad \qquad (3)

Εφαρμόζοντας τον νόμο Στέφαν-Μπόλτζμαν και χρησιμοποιόντας τις (1), (2) και (3), βρίσκουμε ότι η ολική ισχύς εκπομπής της μαύρης τρύπας θα είναι:

P={\hbar\,c^6\over15360 \pi\ G^2M^2}

Δεν υπάρχουν σχόλια: