Παρασκευή 12 Σεπτεμβρίου 2008

Μέλαν σώμα 1

Μέλαν σώμα

Ο όρος μέλαν σώμα στη φυσική, περιγράφει ένα ιδανικό σώμα το οποίο απορροφά όλο το φως που προσπίπτει πάνω του (και κατ' επέκταση, όλη την ηλεκτρομαγνητική ακτινοβολία). Αυτό σημαίνει ότι ένα τέτοιο σώμα δεν αντανακλά καθόλου φως (ή άλλης μορφής ηλεκτρομαγνητική ακτινοβολία) ούτε αφήνει το φως να το διαπεράσει και για αυτές του τις ιδιότητες ονομάζεται μέλαν σώμα. Ωστόσο, σε αντίθεση με την εικόνα που δίνεται από την ονομασία του, το ίδιο το σώμα εκπέμπει κάποια ακτινοβολία, η οποία εξαρτάται από την θερμοκρασία στην οποία βρίσκεται. Στην ουσία το μέλαν σώμα αποτελεί ένα εξιδανικευμένο μοντέλο της ύλης, που επινοήθηκε για να διευκολυνθεί η μελέτη της θερμικής ακτινοβολίας των πραγματικών σωμάτων. Ο όρος εισήχθη από τον Γκούσταβ Ρόμπερτ Κίρχοφ (γερμ. Gustav Robert Kirchhoff) το 1860 και η μελέτη της ακτινοβολίας του έπαιξε μεγάλο ρόλο στη ανάπτυξη της κβαντομηχανικής.

Γενικά, ένα οποιοδήποτε σώμα, σε κάποια μη μηδενική θερμοκρασία, εκπέμπει ακτινοβολία. Αν είναι τέλειο μέλαν σώμα, ο συντελεστής εκπομπής του θα είναι ίσος με την μονάδα. Για κάθε πραγματικό σώμα όμως ο συντελεστής εκπομπής είναι μικρότερος από την μονάδα. Ως συντελεστής εκπομπής ενός σώματος ορίζεται ο λόγος της ακτινοβολούμενης ενέργειας από το σώμα σε σχέση με την ακτινοβολούμενη ενέργεια ενός μελανού σώματος που βρίσκεται στην ίδια θερμοκρασία. Έτσι, το μέλαν σώμα αποτελεί ένα όριο το οποίο μπορούν να προσεγγίσουν σε κάποιο βαθμό τα φυσικά σώματα. Ο συντελεστής εκπομπής ενός πραγματικού σώματος μεταβάλλεται με την θερμοκρασία, την γωνία εκπομπής και το εξεταζόμενο μήκος κύματος. Πολλές φορές όμως είναι χρήσιμο να υποθέτουμε ότι είναι σταθερός. Αυτή παραδοχή αποτελεί ένα άλλο εξιδανικευμένο μοντέλο για τα υλικά σώματα, και για να περιγραφεί αυτό το μοντέλο χρησιμοποιείται ο όρος «φαιό σώμα».

Ακτινοβολία κοιλότητας

Το φως που εισέρχεται στην κοιλότητα από μια μικρή οπή, έπειτα από πολλαπλές αντανακλάσεις απορροφάται σχεδόν ολοκληρωτικά από τα τοιχώματα.
Το φως που εισέρχεται στην κοιλότητα από μια μικρή οπή, έπειτα από πολλαπλές αντανακλάσεις απορροφάται σχεδόν ολοκληρωτικά από τα τοιχώματα.

Το φυσικό «αντικείμενο» που προσεγγίζει καλύτερα το μέλαν σώμα, δεν είναι καν σώμα, αλλά μια μικρή οπή σε ένα κοίλο σώμα (όπως π.χ. η είσοδος μιας σπηλιάς). Το φως που μπαίνει μέσα στην κοιλότητα από την οπή θα ανακλαστεί πολλές φορές πάνω στα τοιχώματα της κοιλότητας και κάθε φορά ένα μέρος του θα απορροφάται από αυτά. Η πιθανότητα για ένα τμήμα της ακτινοβολίας που μπήκε μέσα στην κοιλότητα από την οπή να ξαναβγεί από αυτήν είναι πολύ μικρή, αν η οπή είναι αρκετά μικρή σε σχέση με την κοιλότητα, πράγμα που σημαίνει ότι μόνο ένα πολύ μικρό μέρος από το προσπίπτον φως «ανακλάται» από την οπή, ενώ το υπόλοιπο έχει απορροφηθεί. Αυτό συμβαίνει ανεξάρτητα από το υλικό των τοιχωμάτων και το μήκος κύματος της προσπίπτουσας ακτινοβολίας, διότι, καθώς τα στερεά σώματα έχουν συνεχές φάσμα εκπομπής και απορρόφησης, όλα τα μήκη κύματος σταδιακά θα απορροφηθούν. Δεδομένου ότι το φως που παίρνουμε πίσω είναι αμελητέο, η μόνη ακτινοβολία που θα παίρνουμε από την οπή είναι η θερμική ακτινοβολία που παράγεται στο εσωτερικό της κοιλότητας και εξαρτάται μόνο από την θερμοκρασία της, υπό την προϋπόθεση ότι αυτή βρίσκεται σε θερμική ισορροπία. Το προσεγγιστικό αυτό μέλαν σώμα είναι μια παραλλαγή ενός μοντέλου που πρότεινε ο ίδιος ο Κίρχοφ (βλέπε πιο κάτω).

Για να μπορέσει η κοιλότητα να φτάσει σε θερμική ισορροπία θα πρέπει να είναι τέλεια μονωμένη από το περιβάλλον της. Τότε η ενεργειακή πυκνότητα ρT(v), δηλαδή η ενέργεια ανά μονάδα όγκου και ανά μονάδα συχνότητας (ανά μοναδιαίο εύρος συχνοτήτων) της ακτινοβολίας είναι η ίδια σε όλα τα σημεία. Η ακτινοβολία που γεμίζει το χώρο της κοιλότητας ονομάζεται ακτινοβολία κοιλότητας. Έχει χάσει οποιαδήποτε πληροφορία σχετική με τις ιδιότητες των τοιχωμάτων εκτός από την θερμοκρασία τους. Ένα μικρό μέρος της εξέρχεται από την μικρή οπή, και έχει τα ίδια χαρακτηριστικά με την ακτινοβολία στο εσωτερικό της κοιλότητας. Η κατανομή της ενεργειακής ροής στις διάφορες συχνότητες, δηλαδή η ποσότητα ενέργειας που εκπέμπεται από την μονάδα επιφάνειας στη μονάδα του χρόνου ανά μονάδα συχνότητας, RT(v) ονομάζεται φασματική εκπομπή ή αφετική ικανότητα ή φάσμα της ακτινοβολίας. Σχετίζεται με την πυκνότητα ενέργειας μέσω της σχέσης

R_T(\nu)=\frac{c}{4}\rho_T(\nu)

Για να υπολογίσουμε την συνολική ροή RT της ενέργειας που εκπέμπεται ανά μονάδα επιφάνειας και ανά μονάδα χρόνου, πρέπει να ολοκληρώσουμε την ποσότητα αυτή σε όλες τις συχνότητες, δηλαδή

R_T=\int_{0}^{\infty } R_T(\nu)\, d\nu

Το αποτέλεσμα της ολοκλήρωσης είναι ο νόμος Στέφαν - Μπόλτζμαν,

R_T=\frac{c}{4}\rho_T=\sigma\ T^4

όπου \sigma\ =5.670400(40)\times\ 10^{-8} Watt\cdot\ m^{-2}\cdot\ K^{-4} η σταθερά Στέφαν - Μπόλτζμαν.

Για ένα σώμα που δεν είναι απολύτως μαύρο, αλλά έχει σταθερό συντελεστή απορρόφησης ε, (η υπόθεση του φαιού σώματος), η ολική ροή ενέργειας δίνεται από τη σχέση:

R_T=\sigma \epsilon\ T^4

Μπορούμε να θεωρήσουμε ότι η ακτινοβολούμενη ενέργεια έχει την μορφή στάσιμων κυμάτων μέσα στην κοιλότητα, που αρχίζουν σε κάποιο σημείο του τοιχώματος και καταλήγουν σε ένα άλλο. Για να συμβαίνει αυτό, το ηλεκτρικό πεδίο του κύματος πρέπει να είναι μηδέν στην επιφάνεια των τοιχωμάτων. Υπό αυτήν την προϋπόθεση, ο αριθμός n των στάσιμων κυμάτων που μπορούν να 'χωρέσουν' μέσα στην κοιλότητα, μέσα σε ένα εύρος συχνοτήτων, είναι πεπερασμένος. Οι Rayleigh και Jeans έδειξαν ότι είναι ανάλογος του τετραγώνου της συχνότητας. Αυτό δείχνει ότι όσο μεγαλύτερη είναι η συχνότητα, τα δυνατά στάσιμα κύματα είναι περισσότερα. Δίνεται από την σχέση:

n= \frac{8\pi\ \nu^2}{c^3}

Με βάση την αρχή ισοκατανομής της ενέργειας θα περίμενε κανείς ότι όλες οι συχνότητες έχουν την ίδια μέση ενέργεια kT, όπου Τ η απόλυτη θερμοκρασία και k η σταθερά του Μπόλτζμαν. Έτσι, η μέση πυκνότητα ενέργειας γύρω από μια συχνότητα v θα ήταν

\rho_T(\nu)= \frac{8\pi\ k T \nu^2}{c^3}

Αυτή η σχέση έγινε γνωστή ως νόμος των Rayleigh-Jeans για την ακτινοβολία του μέλανος σώματος. Παρατηρείται συμφωνία με τις μετρήσεις μόνο στις χαμηλές συχνότητες. Αφού τα δυνατά στάσιμα κύματα είναι περισσότερα όσο μεγαλώνει η συχνότητα, με τον αριθμό τους n να τείνει στο άπειρο όταν η συχνότητα τείνει στο άπειρο, τότε και ή ενέργεια της ακτινοβολίας απειρίζεται. Αυτό φυσικά είναι παράλογο, και έμεινε γνωστό ως το πρόβλημα της υπεριώδους καταστροφής. Το πρόβλημα αυτό έγινε γνωστό μετά την εξαγωγή της σωστής σχέσης από τον Πλανκ, και επομένως δεν είχε ουσιαστική επιρροή στις εξελίξεις.

Σύμφωνα με την εργασία του Πλανκ, η ενέργεια των στάσιμων κυμάτων δεν είναι η ίδια για όλες τις συχνότητες. Στη θέση της ποσότητας kT μπαίνει η ποσότητα

\frac{h\nu}{e^{\frac{h\nu}{kT}}-1}

και η σχέση που δίνει τη σωστή φασματική πυκνότητα ενέργειας είναι:

\rho_T(\nu)= \frac{8 \pi\ h}{c^3} \cdot\ \frac{\nu^3}{e^{\frac{hv}{kT}}-1}

που είναι γνωστή ως ο νόμος του Πλανκ για την ακτινοβολία του μέλανος σώματος.

Δεν υπάρχουν σχόλια: