Τρίτη 24 Ιουνίου 2008

Ο δεύτερος θερμοδυναμικός νόμος και το βέλος του χρόνου(Μερος 1)

Το 1856 ο γερμανός φυσικός Hermann von Helmholtz έκανε ίσως την πιο μελαγχολική πρόβλεψη στην ιστορία της επιστήμης. Το σύμπαν, ισχυρίστηκε ο Helmholtz, πεθαίνει. Η βάση αυτής της ζοφερής δήλωσης ήταν ο λεγόμενος δεύτερος Νόμος της θερμοδυναμικής. Ο εν λόγω νόμος διατυπώθηκε για πρώτη φορά στις αρχές του 19ου αιώνα ως μια πρόταση σχετικά με την απόδοση των θερμικών μηχανών. Σύντομα, όμως, αναγνωρίστηκε η σημασία του για ολόκληρο το σύμπαν και οι όντως κοσμικές συνέπειες του.

Στην απλούστερη εκδοχή του, ο δεύτερος Νόμος ορίζει ότι η θερμότητα ρέει πάντα αυθόρμητα από τα θερμά στα ψυχρά σώματα και ποτέ από τα ψυχρά στα θερμά χωρίς να δαπανήσουμε ενέργεια. Φυσικά, αυτή είναι μια γνωστή και προφανής ιδιότητα των φυσικών συστημάτων.

Η ροή της θερμότητας, όμως, έχει μόνο μία κατεύθυνση, και επομένως η παραπάνω διαδικασία παρουσιάζει ασυμμετρία στο χρόνο. Μια ταινία που θα έδειχνε θερμότητα να ρέει αυθόρμητα από ένα ψυχρό σ' ένα θερμό σώμα θα φαινόταν το ίδιο παράξενο με ένα ποτάμι που ρέει προς την κορυφή ενός λόφου ή με σταγόνες βροχής που ανεβαίνουν προς τα σύννεφα. Μπορούμε, επομένως, να αναγνωρίσουμε μια θεμελιώδη κατεύθυνση στη ροή της θερμότητας, η οποία συχνά αναπαριστάται με ένα βέλος που δείχνει από το παρελθόν στο μέλλον. Αυτό το «βέλος του χρόνου» δείχνει τη μη αντιστρεπτή φύση των θερμοδυναμικών διεργασιών, και η ύπαρξη του έχει γοητεύσει τους φυσικούς τα τελευταία εκατόν πενήντα χρόνια.

Ακολούθως το έργο του Helmholtz, του Rudolf Clausius, και του λόρδου Kelvin οδήγησε στην αναγνώριση της σημασίας μιας ποσότητας που ονομάζεται εντροπία (το μέτρο της αταξίας) και χαρακτηρίζει τις μη αντιστρεπτές μεταβολές στη θερμοδυναμική. Στην απλή περίπτωση ενός θερμού σώματος που βρίσκεται σε επαφή με ένα ψυχρό σώμα, η εντροπία ορίζεται ως η θερμική ενέργεια διηρημένη με τη θερμοκρασία.

S =< dQ/dT

(Η ισότητα ισχύει στις λεγόμενες αντιστρεπτές μεταβολές. Δηλαδή σε εκείνες που αν κάνουμε τους αντίθετους ακριβώς χειρισμούς από αυτούς που κάναμε κατά τη διάρκεια της μεταβολής, τόσο το σύστημά μας όσο και το περιβάλλον του οδηγούνται ξανά στις αρχικές τους καταστάσεις. Οι αντιστρεπτές μεταβολές είναι εξιδανικευμένες μεταβολές. Στις πραγματικές μεταβολές ισχύει η ανισότητα)

Ας θεωρήσουμε μια μικρή ποσότητα θερμότητας που ρέει από το θερμό στο ψυχρό σώμα. Το θερμό σώμα θα χάσει κάποια εντροπία, ενώ το ψυχρό θα κερδίσει. H εντροπία, όμως, την οποία θα κερδίσει το ψυχρό σώμα είναι μεγαλύτερη από αυτή που θα χάσει το θερμό, διότι, ενώ η ποσότητα της θερμικής ενέργειας που ανταλλάσσεται είναι η ίδια, οι θερμοκρασίες τους διαφέρουν. Άρα, η συνολική εντροπία ολόκληρου του συστήματος —ψυχρό και θερμό σώμα μαζί— τελικά αυξάνεται. Μια διατύπωση, συνεπώς, του Δεύτερου Νόμου της θερμοδυναμικής είναι ότι η εντροπία ενός τέτοιου συστήματος δεν μειώνεται ποτέ, αφού μείωση της εντροπίας θα σήμαινε ότι κάποιο ποσό θερμότητας είχε μεταφερθεί αυθόρμητα από το ψυχρό στο θερμό σώμα.

Πληρέστερη ανάλυση του Δεύτερου Νόμου επιτρέπει τη γενίκευση του σε όλα τα κλειστά συστήματα: η εντροπία δεν ελαττώνεται ποτέ. Αν το σύστημα περιλαμβάνει ένα ψυγείο, το οποίο μπορεί να μεταφέρει θερμότητα από μια ψυχρή περιοχή (θάλαμος) σε μια θερμή (περιβάλλον), τότε στον υπολογισμό της συνολικής εντροπίας του συστήματος θα πρέπει να λάβουμε υπόψη και την ενέργεια που καταναλώνεται για τη λειτουργία του ψυγείου. Αυτή η κατανάλωση ενέργειας αυξάνει την εντροπία, και αποδεικνύεται ότι πάντοτε η αύξηση που προκαλείται από τη λειτουργία του ψυγείου είναι μεγαλύτερη από τη μείωση που προκύπτει από τη μεταφορά θερμότητας από την ψυχρή στη θερμή περιοχή.

Στα φυσικά συστήματα, επίσης, όπως εκείνα που περιλαμβάνουν βιολογικούς οργανισμούς ή σχηματισμό κρυστάλλων, η εντροπία ενός μέρους τους συχνά μειώνεται. Πάντοτε, όμως, αυτή η μείωση συνοδεύεται από αντισταθμιστική αύξηση της εντροπίας ενός άλλου μέρους του συστήματος. Συνολικά, επομένως, η εντροπία ουδέποτε ελαττώνεται.

Αν θεωρήσουμε ολόκληρο το σύμπαν ως ένα κλειστό σύστημα, με βάση το γεγονός ότι δεν υπάρχει τίποτε «έξω» από αυτό, τότε ο δεύτερος Νόμος της θερμοδυναμικής προβλέπει κάτι πολύ σημαντικό: η συνολική εντροπία του σύμπαντος ουδέποτε μειώνεται. Αντίθετα, αυξάνεται αδυσώπητα. Ένα καλό παράδειγμα μιας άλλης διαδικασίας προς τη μία κατεύθυνση βρίσκουμε στον Ήλιο, ο οποίος εκπέμπει συνεχώς θερμότητα στα ψυχρά βάθη του Διαστήματος. Αυτή η θερμότητα διαχέεται στο σύμπαν χωρίς ποτέ να επιστρέφει. Πρόκειται για μια ολοφάνερα μη αντιστρεπτή διαδικασία.

Προκύπτει, όμως, ένα εύλογο ερώτημα: μπορεί η εντροπία του σύμπαντος να αυξάνεται για πάντα; Ας θεωρήσουμε ένα θερμό και ένα ψυχρό σώμα που έρχονται σε επαφή στο εσωτερικό ενός θερμικά μονωμένου δοχείου. Θερμική ενέργεια ρέει από το θερμό στο ψυχρό σώμα, και η εντροπία αυξάνεται. Έτσι, όμως, το ψυχρό σώμα θερμαίνεται ενώ το θερμό ψύχεται, ώστε τελικά αποκτούν και τα δύο την ίδια θερμοκρασία. Όταν επιτυγχάνεται αυτή η κατάσταση, παύει κάθε μεταφορά θερμότητας. Το σύστημα μέσα στο δοχείο έχει ομοιόμορφη θερμοκρασία — βρίσκεται σε μια σταθερή κατάσταση μέγιστης εντροπίας, η οποία είναι γνωστή ως κατάσταση θερμοδυναμικής ισορροπίας. Περαιτέρω αλλαγή δεν αναμένεται, εφόσον το σύστημα παραμένει απομονωμένο. Εάν όμως τα σώματα διαταραχθούν με κάποιον τρόπο, λόγου χάρη με την εισαγωγή θερμότητας στο δοχείο, τότε εμφανίζεται εκ νέου θερμική δραστηριότητα και η εντροπία αυξάνεται σε υψηλότερη μέγιστη τιμή.

Ποιες πληροφορίες μας δίνουν αυτές οι βασικές ιδέες της θερμοδυναμικής για τις αστρονομικές και κοσμολογικές μεταβολές; Στην περίπτωση του ήλιου και των περισσότερων άστρων, η εκροή θερμότητας μπορεί να συνεχιστεί για πολλά δισεκατομμύρια χρόνια, αλλά σίγουρα δεν είναι ανεξάντλητη. Σ' ένα κανονικό άστρο η θερμότητα παράγεται από πυρηνικές διεργασίες που συντελούνται στο εσωτερικό του. Κάποτε ο ήλιος μας θα εξαντλήσει τα καύσιμα του και θα αρχίσει να ψύχεται ώσπου να αποκτήσει τη θερμοκρασία του περιβάλλοντος χώρου.

Αν και ο Hermann von Helmholtz δεν γνώριζε τίποτε για τις πυρηνικές αντιδράσεις (η πηγή της τεράστιας ηλιακής ενέργειας αποτελούσε μυστήριο εκείνη την εποχή) κατανόησε τη γενική αρχή ότι όλες οι φυσικές δραστηριότητες στο σύμπαν τείνουν προς μια τελική κατάσταση θερμοδυναμικής ισορροπίας, ή μέγιστης εντροπίας, ύστερα από την οποία τίποτε το αξιόλογο δεν πρόκειται να συμβεί σε όλους τους επόμενους αιώνες. Αυτή η μονόδρομη διολίσθηση του σύμπαντος προς την ισορροπία ονομάστηκε από τους πρώτους επιστήμονες της θερμοδυναμικής «θερμικός θάνατος» του σύμπαντος. Φυσικά, δεν υπήρχε αμφιβολία ότι απομονωμένα συστήματα είναι δυνατόν να αναζωογονηθούν από εξωτερικές διαταραχές. Για το σύμπαν, όμως, εξ ορισμού δεν υπάρχει τίποτε «εξωτερικό», και επομένως τίποτε δεν μπορεί να εμποδίσει έναν καθολικό θερμικό θάνατο.

Η ανακάλυψη ότι ο θάνατος του σύμπαντος αποτελεί αμείλικτη συνέπεια των νόμων της θερμοδυναμικής είχε βαθιά καταθλιπτική επίδραση σε πολλές γενιές επιστημόνων και φιλοσόφων, όπως τον Bertrand Russell κλπ.

Δεν υπάρχουν σχόλια: